本经验介绍含π-α诱导类型三角函数的不定积分,即求∫sin(π-α)dα,∫cos(π-α)dα,∫tan(π-α)dα,∫cot(π-α)dα,∫sec(π-α)dα,∫csc(π-α)dα的步骤。
工具/原料
三角函数基本知识
不定积分基本知识
1.含π-α的诱导公式
1、sin(π-α)=sin αcos(π-α)=-cos αtan(π-α)=-tan αcot(π-α)=-cot αsec(π-α)=-sec αcsc(π-α)=csc α
2、图例解析如下:
2.sin(π-α)的不定积分
1、∫sin(π-α)dα=-∫sin(π-α)d(π-α)=cos(π-α)+c=-cosα+c
2、图例解析如下:
3.cos(π-α)的不定积分
1、∫cos(π-α)dα=-∫cos(π-α)d(π-α)=-sin(π-α)+c=-sinα+c
2、图例解析如下:
4.tan(π-α)的不定积分
1、∫tan(π-α)dα=-∫[sin(π-α)d(π-α)/ cos(π-α)]=∫d cos(π-α)/cos(π-α)=ln|cos(π-α)|+c=ln|cosα|+c
2、图例解析如下:
5.cot(π-α)的不定积分
1、∫cot(π-α)dα=-∫[cos(π-α)d(π-α)/ sin(π-α)]=-∫d sin(π-α)/sin(π-α)=-ln|sin(π-α)|+c=-ln|sinα|+c
2、图例解析如下:
6.sec(π-α)的不定积分
1、∫sec(π-α)dα=-∫dα/ cos(π-α)=-∫d(π-α)/ cos(π-α)=-∫cos(π-α)d(π-α)/ [cos(π-α)]^2=-∫dsin(π-α)/ {1-[sin(π-α)]^2}=-∫dsin(π-α)/ {[1-sin(π-α)][1+ sin(π-α)]}=-(1/2){∫dsin(π-α)/ [1-sin(π-α)]+∫dsin(π-α)/ [1+sin(π-α)]}=-(1/2)ln{[1+sin(π-α)]/ [1-sin(π-α)]}+c=-(1/2)ln[(1+sinα)/(1-sinα)]+c=-(1/2)ln[(1+sinα)^2/(cosα)^2]+c=-ln|(1+sinα)/cosα|+c=-ln|secα+tanα|+c
2、图例解析如下:
7.csc(π-α)的不定积分
1、∫csc(π-α)dα=∫dα/ sin(π-α)=-∫d(π-α)/ sin(π-α)=-∫sin(π-α)d(π-α)/ [sin(π-α)]^2=∫dcos(π-α)/ {1-[cos(π-α)]^2}=∫dcos(π-α)/ {[1-cos(π-α)][1+ cos(π-α)]}=(1/2){∫dcos(π-α)/ [1-cos(π-α)]+∫dcos(π-α)/ [1+cos(π-α)]}=(1/2)ln{[1+cos(π-α)]/ [1-cos(π-α)]}+c=(1/2)ln[(1-cosα)/(1+cosα)]+c=(1/2)ln[(1-cosα)^2/(sinα)^2]+c=ln|(1-cosα)/sinα|+c=ln|cscα-cotα|+c
2、图例解析如下: