抛物线切线方程

时间:2024-10-12 02:57:11

抛物线切线方程:

1、已知切点Q(x0,y0),若y²=2px,则切线y0y=p(x0+x);若x²=2py,则切线x0x=p(y0+y)等。

2、已知切点Q(x0,y0)

若y²=2px,则切线y0y=p(x0+x)。

若x²=2py,则切线x0x=p(y0+y)。

3、已知切线斜率k

若y²=2px,则切线y=kx+p/(2k)。

若x²=2py,则切线x=y/k+pk/2(y=kx-pk²/2)。

抛物线切线方程

扩展资料:

性质

1、过抛物线焦弦两端的切线的交点在抛物线的准线上。

2、过抛物线焦弦两端的切线互相垂直。

3、以抛物线焦弦为直径的圆与抛物线的准线相切。

4、过抛物线焦弦两端的切线的交点与抛物线的焦点的连线和焦点弦互相垂直。

5、过焦弦两端的切线的交点与焦弦中点的连线,被抛物线所平分。

© 手抄报圈