minitable三种正太性检验方法有什么区别

时间:2024-10-13 10:02:23

1、首先,我们打开minitable软件,点击统计-基本统计量-正态性检验,进入检验界面

minitable三种正太性检验方法有什么区别

2、下面我们详细讲解三种方法:Anderson-Darling检验(A-D检验),是一种基于经验累积分布函数(ECDF)的算法,特别适用于小样本(当然也适吹涡皋陕用于大样本),AD值越小,表明分布对数据拟合度越好,A-D检验只适合特定的连续分布如:normal、lognormal、exponential、Weibull、logistic、extreme-value type 1。A-D检验是对K-S检验的一种修正,相比K-S检验它加重了对尾部数据的考量,K-S检验具有分布无关性,它的临界值并不依赖被测的特定分布,而A-D检验使用特定分布去计算临界值,这使得A-D检验具有更灵敏的优势。Anderson-Darling 检验选择此项将执行正态性的 Anderson-Darling 检验,此检验是将样本数据的经验累积分布函数与假设数据呈正态分布时期望的分布进行比较。如果实测差异足够大,该检验将否定总体呈正态分布的原假设。

minitable三种正太性检验方法有什么区别

4、Kolmogorov-Smirnov检验(K-S检验),也是一种基于经验累积分布函数(ECDF)的算法,K-S检验最吸引人的特性是具有分布无关性,所以适用于任何连续分布,很适合小样本(当然也适合大样本)。但是由于K-S检验相对尾部而言,往往对分布中心更敏感,并且它的临界值并不依赖被测的特定分布,相对A-D检验而言它的灵敏度较低,所以很多的分析更愿意使用A-D 拟合度检验。Kolmogorov-Smirnov 正态性检验选择此项将执行正态性的 Kolmogorov-Smirnov 检验,此检验是将样本数据的经验累积分布函数与假设数据呈正态分布时期望的分布进行比较。如果实测差异足够大,该检验将否定总体呈正态分布的原假设。

minitable三种正太性检验方法有什么区别

5、总结:对这些检验的结果,我们都用 p 值进行判断,一般p值小于0.05,认为不符合正态分布,可以否定原假设,并断定总体呈非正态分布。一般来说Anderson-darling、Ryan-Joiner、Kolmogorov-Smirnov三种检验中只要有一种给出否定的结论,就应该判定该分布非正态。实际上AD检验即使通不过,但是另外两种能通过的话,也可以当成正态分布的,因为可以把它看成近似正态分布,这个与样本的多少有关。AD检验更适合小样本数量的检验。因此,有的时候AD通不过正态,其它两种能通过,也能把数据看作近似正态分布的

© 手抄报圈