如何求x^2+y^2=1外p(2,5)割线的中点轨迹方程

时间:2024-10-11 18:25:30

1、运用解析几何基本公式转化为代数等式,并根据在圆x^2+y^2=1中有关弦中点的一些性质,圆心和弦中点的连线垂直于弦,从而求出轨迹方程。

如何求x^2+y^2=1外p(2,5)割线的中点轨迹方程

2、轨迹性质定义法,根据题设条件,判断并确定轨迹的曲线类型,运用待定系数法求出曲线方程。

如何求x^2+y^2=1外p(2,5)割线的中点轨迹方程

3、动点M可看作直线OM与割线PM的交点,而由于它们的垂直关系,从而获得解法。

如何求x^2+y^2=1外p(2,5)割线的中点轨迹方程

4、参数求轨迹法,将动点坐标表示成某一中间变量即参数的函数,再设法消去参数。由于动点M(x0,y0)随直线的斜率变化而发生变化,所以动点M的坐标是直线斜率的函数。

如何求x^2+y^2=1外p(2,5)割线的中点轨迹方程
如何求x^2+y^2=1外p(2,5)割线的中点轨迹方程

5、点在曲线上则点的坐标允勃榘嘟满足方程。这里由于中点M的坐标(x,y)与两交点A(x1,y1),B(x2,y2)通过中点公式联系起来,又点P、M、A、B构成4点共线,根据它们的斜率相等,可求得轨迹方程。

如何求x^2+y^2=1外p(2,5)割线的中点轨迹方程

6、化简计算所得方程,即可得本题所求的轨迹方程。

如何求x^2+y^2=1外p(2,5)割线的中点轨迹方程
如何求x^2+y^2=1外p(2,5)割线的中点轨迹方程

7、点在曲线上则点的坐标允勃榘嘟满足方程。这里由于中点M的坐标(x,y)与两交点A(x1,y1),B(x2,y2)通过中点公式联系起来,又点P、M、A、B构成4点共线,根据它们的斜率相等,可求得轨迹方程。

如何求x^2+y^2=1外p(2,5)割线的中点轨迹方程
如何求x^2+y^2=1外p(2,5)割线的中点轨迹方程

8、 轨迹方程,符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹,平面轨迹一般是曲线,空间轨迹一般是曲面。

如何求x^2+y^2=1外p(2,5)割线的中点轨迹方程

9、求动点的轨迹方程,主要有定义法、相关点法和参数法等。 定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫作定义法. 相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫作相关点法. 参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫作参数法.

如何求x^2+y^2=1外p(2,5)割线的中点轨迹方程
© 手抄报圈