1、二阶矩阵的伴随矩阵,如果题目给出一个矩阵A是二阶矩阵,那么它的伴随矩阵等于原来矩阵的主对角线元素对换,副对角线元素变号即可。主对角线的元素的代数余子式跟矩阵原始的关系是对换以及变号的关系。
2、伴随矩阵公式的拓展,A矩阵的伴随矩阵乘以A矩阵等于A矩阵与A的伴随矩阵的乘积等于E。根据这个公式拓展矩阵的逆矩阵以及伴随矩阵行列的关系。以及逆矩阵的倒数,行列式的倒数的关系。
3、利用逆矩阵已知,求伴随矩阵以及伴随矩阵的伴随矩阵的行列式。等于A矩阵的行列式的N-2次方与A矩阵的乘积。
4、利用拉普拉斯展开式,如果给出的矩阵是明显的按照拉普拉斯的情况,那么我们是不需要考虑主对角线或者是副对角线的取值,直接取剩下的非零矩阵进行求解。或者按照伴随矩阵等于A矩阵的行列式乘以A的逆矩阵。
5、伴随矩阵的秩与原矩阵A的关系,如果矩阵的秩是满的状态,那么伴随矩阵的秩也是满的,如果矩阵的秩等于N-1,那么伴随矩阵的秩等于1,如果矩阵的秩小于N-1,那么伴随矩阵的秩等于0.证明时候需要行列式,以及秩的性质。
6、秩的性质与伴随矩阵的蔡龇呶挞关系,如果矩阵A的秩等于N-1,那么A的行列式等于0,而且我们知道A中有n-1个子式是不为0的,那么A的行列式等于0,AA的伴随矩阵等于0矩阵。所以A的秩加上A的伴随矩阵的秩等于或者小于N。